Magnetic Fields
 and Forces

--------------------------------------
Joseph F. Alward, PhD    
Department of  Physics  
University of the Pacific

   

 Magnetic Fields                                                                 
One Tesla (T) = 10,000 Gauss
------------------------------------------
Source Magnetic Field
        (Gauss)
Earth          0.5
Appliance          10
Bar magnet         100
Human limit       2000
Large electro-
magnet
    50,000

Nicola Tesla (1856-1943)
His AC power transmission
won over Thomas Edison's
DC power.

Friedrich Gauss (1777-1855)

  

 Important Equations and People                                  
1.  F = ILB sin q
2.  F = qvB sin q
3.  F = ma
4.  a = v2/r
5.  B = m0I /2pr

-----------------------
Moving charges
cause magnetic
fields.
-----------------------
Magnetic fields
exert forces on
moving charges.

 Andre Marie Ampere
 Ampere's Law

Hans Christian Oersted
Discovered magnetic
fields.

Count Ivan Alvardovich
 (1821-1866)

  

  

   Currents Set up Magnetic Fields   


This is the first of two right-hand rules dealing with
magnetism and magnetic forces.


Hans Christian Oersted
(1777-1851)

  


 The Right-Hand Rule for Magnetic Fields     
 


  B-Field of a Current Loop               


  Another View of the B-Field of a Current Loop       

A current loop is the same as a bar
magnet; it has north and south faces.

B field lines leave north "faces",
enter at south "faces".
 (In this
case, the "faces" are left and right
side of the circular plane.)

             
Rule:  If current is counter-
clockwise, you're looking
at the "north" face of the
magnet.

B-field is strongest
at center.  From this
side of the loop, the
inside face of the loop
is "north".

  The Electron is a Magnetic Dipole              
 

 The electron spins on its axis, giving
 rise to a electron current in the
 direction of rotation.

The electron is  like a magnetic
dipole
, a miniature magnet, with a
north end and a south end.

   Magnetic Spin Dipoles in Iron                

  

  North and South Cannot Be Isolated    
Cutting a magnet in half
will not isolate a single
north or south.  One
magnet becomes two,
then four, and so on.

This process will never
end; even when the last
electron spin dipole is
reached, it cannot be cut
to reveal a single north
or single south pole.


 

 Magnetic Fields of a Bar Magnet and the Earth         

B-field of bar magnet is similar
to the Earth's magnetic field.
B-field lines leave north face,
enter at south face.


Convection currents inside
the earth set up magnetic
field.

  Force Between Current Carrying Wires     

If currents are in the same direction, wires attract.  If in opposite
direction, wires repel.  This is the opposite of the rule for charges:
like charges repel, opposite charges attract.  Using the two right
hand rules, one for finding thedirection of the B-field of a wire, and
the other for the direction of force on a wire, one can predict the
results above.

 Current Loops Attract and Repel                                                

 These current loops are "magnetic
 dipoles
".

Which sides of loops are north, and
which south?

   

 Bar Magnets                                                               

If magnetic dipole loops are oriented the same
on neighboring faces, the magnets attract.

North is attracted to south,
and is repelled by north.

  Inducing Magnetism                                               

This is what's
happening inside
the iron bar to the
electron spin magetic
dipoles.

  

  Induced Magnetism                                    

   Unaligned dipoles            Dipoles aligned

 Permanent magnet twists iron's magnetic dipoles
 into alignment with the magnet's B field.

Magnetic shoes induce
magnetism in iron chimney.  
Both shoes and chimney
beneath shoes are now
magnets of opposite
polarity.

  

  The Electromagnet and the Doorbell    


B-field of current creates
strong alignment of magnetic
dipoles in iron.

  Paramagnetism                                                
Oxygen is paramagnetic, which
means that oxygen molelcules are
magnetic dipoles, but at normal
temperature, they remain unaligned
since their interaction is very weak.

Paramagnetism is much weaker
than ferromagnetism, which is the
magnetism associated with iron, or
materials like iron, whose magnetic
dipoles interact strongly and align
together at room temperature
to create a very strong magnetic
field.

  

  

  

 Induced Magnetism Recording           

  

 Determining Attraction and Repulsion                  

Magnetic field of current loops
twist magnetic dipoles in iron
cylinder into alignment, creating
an "electromagnet".

  

Iron Filings Show Magnetic Field Direction           

 Magnetic field induces
 magnetism in iron filings.


Iron filings are tiny bar
magnets which line up
parallel to B-field lines.

 Compass Needle is a Magnet:  
 It Aligns with the B-Field
      

  Compass Needle Aligns with Magnetic Field     

  Magnetic Force on Current-Carrying Wire           
 F = ILB sin q

The direction of the force on
the wire may be determined
by a second  right-hand rule, a
right hand rule for magnetic
force.

The other right-hand rule
gave the direction of the
magnetic field B.

    Using the Second Right-Hand Rule to
   Determine Direction of Force
                                    
 

    Right-Hand Rule Determines Direction of Force    

In which direction, if any, will the metal rod be deflected?

   Torque on a Current Loop in a Magnetic Field                

  Direct-Current (DC) Motor                  

 CD Motor         

  Moving Charges in a B-Field           
 
  Electric force can be parallel to direction of velocity, but the
  magnetic force is always perpendicular to the velocity vector.

  Right-Hand Rule for Moving Charges      
 
           F = qvB sin q

 Magnetic Force on Moving Charges                                            
     F = qvB sin q
         
   If the velocity v is parallel to the magnetic field B,
   the magnetic force is zero because sin q = 0.

  

  Force on Moving Charges:  F = qvB sin q         

sin q is positive for any angle between
0 and 180 degrees.

    F = qvB sin q                                                            

What is the direction of the force F , if any, in each case?

  Charges Move in Circular Paths                                 

   Circular Paths in Magnetic Fields                                 

   Circular Motion in B-Field           
Right Hand Rule for Force

Fingers point in direction of
magnetic field B.

Thumb points in direction of
the velocity vector v.

Palm shows the direction of
the force F.

  Mass Spectrometer                    
F = qvB sin q        (1)
q = 90 deg            (2)
F = qvB                (3)

F = ma                  (4)
a = v2 /r                 (5)

F = mv2 /r              (6)
-----------------------
Setting (3) and (6)
equal:

qvB = mv2 /r          (7)
m = qBr/v              (8)

 Electron Beam in Magnetic Field       

 Electrons are deflected downward.  What is the
 direction of the magnetic field B?

  Aurora Borealis                                                             


Nuclear blasts in the atmosphere will
cause auroras (aurorae) at north and
south poles.

  Southern Lights:   Aurora Australis.

  

  Magnetohydrodynamics               

                   Yamato II

  Ampere's Law                     

SB|| Dl  = m0 I

I = net current intersecting
     the region bounded by
     the closed path

  Ampere's Law Applied to a Straight Wire      
Ampere's Law:

SB|| Dl  = m0 I

I = net current intersecting
     the region bounded by
     the closed path
--------------------------
B|| = constant = B
SB|| Dl = B SDl
             = B (2pr)
B (2pr) = m0 I
B = m0 I /2pr

  B-Field of a Straight Wire 
B = m0 I /2pr

m0 = 4p x 10-7 (SI units)
--------------------------------------------
I = 5 A

r = 0.02 m

B = (4p x 10-7) (5)/[(2p)(0.02)]
   = 50 x 10-6 T
   = 0.50 x 10-4
   = 0.50 gauss
(about the same as Earth's field)
---------------------------------------------
What is the B field at 0.04 m?